Source code editor What Is Ajax
↑
Name | Description |
---|---|
AVG() | Return the average value of the argument |
BIT_AND() | Return bitwise and |
BIT_OR() | Return bitwise or |
BIT_XOR() (v4.1.1) | Return bitwise xor |
COUNT(DISTINCT) | Return the count of a number of different values |
COUNT() | Return a count of the number of rows returned |
GROUP_CONCAT() (v4.1) | Return a concatenated string |
MAX() | Return the maximum value |
MIN() | Return the minimum value |
STD() , STDDEV() | Return the population standard deviation |
STDDEV_POP() (v5.0.3) | Return the population standard deviation |
STDDEV_SAMP() (v5.0.3) | Return the sample standard deviation |
SUM() | Return the sum |
VAR_POP() (v5.0.3) | Return the population standard variance |
VAR_SAMP() (v5.0.3) | Return the sample variance |
VARIANCE() (v4.1) | Return the population standard variance |
This section describes group (aggregate) functions that operate on sets of values. Unless otherwise stated, group functions ignore NULL
values.
If you use a group function in a statement containing no GROUP BY
clause, it is equivalent to grouping on all rows.
For numeric arguments, the variance and standard deviation functions return a DOUBLE
value. The SUM()
and AVG()
functions return a DECIMAL
value for exact-value arguments (integer or DECIMAL
), and a DOUBLE
value for approximate-value arguments (FLOAT
or DOUBLE
). (Before MySQL 5.0.3, SUM()
and AVG()
return DOUBLE
for all numeric arguments.)
The SUM()
and AVG()
aggregate functions do not work with temporal values. (They convert the values to numbers, losing everything after the first non-numeric character.) To work around this problem, you can convert to numeric units, perform the aggregate operation, and convert back to a temporal value. Examples:
SELECT SEC_TO_TIME(SUM(TIME_TO_SEC(time_col
))) FROMtbl_name
; SELECT FROM_DAYS(SUM(TO_DAYS(date_col
))) FROMtbl_name
;
Returns the average value of
. The expr
DISTINCT
option can be used as of MySQL 5.0.3 to return the average of the distinct values of expr
.
AVG()
returns NULL
if there were no matching rows.
mysql>SELECT student_name, AVG(test_score)
->FROM student
->GROUP BY student_name;
Returns the bitwise AND
of all bits in expr
. The calculation is performed with 64-bit (BIGINT
) precision.
This function returns 18446744073709551615
if there were no matching rows. (This is the value of an unsigned BIGINT
value with all bits set to 1.)
Returns the bitwise OR
of all bits in expr
. The calculation is performed with 64-bit (BIGINT
) precision.
This function returns 0
if there were no matching rows.
Returns the bitwise XOR
of all bits in expr
. The calculation is performed with 64-bit (BIGINT
) precision.
This function returns 0
if there were no matching rows.
Returns a count of the number of non-NULL
values of expr
in the rows retrieved by a SELECT
statement. The result is a BIGINT
value.
COUNT()
returns 0
if there were no matching rows.
mysql>SELECT student.student_name,COUNT(*)
->FROM student,course
->WHERE student.student_id=course.student_id
->GROUP BY student_name;
COUNT(*)
is somewhat different in that it returns a count of the number of rows retrieved, whether or not they contain NULL
values.
COUNT(*)
is optimized to return very quickly if the SELECT
retrieves from one table, no other columns are retrieved, and there is no WHERE
clause. For example:
mysql> SELECT COUNT(*) FROM student;
This optimization applies only to MyISAM
tables only, because an exact row count is stored for this storage engine and can be accessed very quickly. For transactional storage engines such as InnoDB
and BDB
, storing an exact row count is more problematic because multiple transactions may be occurring, each of which may affect the count.
COUNT(DISTINCT
expr
,[expr
...])
Returns a count of the number of different non-NULL
values.
COUNT(DISTINCT)
returns 0
if there were no matching rows.
mysql> SELECT COUNT(DISTINCT results) FROM student;
In MySQL, you can obtain the number of distinct expression combinations that do not contain NULL
by giving a list of expressions. In standard SQL, you would have to do a concatenation of all expressions inside COUNT(DISTINCT ...)
.
This function returns a string result with the concatenated non-NULL
values from a group. It returns NULL
if there are no non-NULL
values. The full syntax is as follows:
GROUP_CONCAT([DISTINCT]expr
[,expr
...] [ORDER BY {unsigned_integer
|col_name
|expr
} [ASC | DESC] [,col_name
...]] [SEPARATORstr_val
])
mysql>SELECT student_name,
->GROUP_CONCAT(test_score)
->FROM student
->GROUP BY student_name;
Or:
mysql>SELECT student_name,
->GROUP_CONCAT(DISTINCT test_score
->ORDER BY test_score DESC SEPARATOR ' ')
->FROM student
->GROUP BY student_name;
In MySQL, you can get the concatenated values of expression combinations. You can eliminate duplicate values by using DISTINCT
. If you want to sort values in the result, you should use ORDER BY
clause. To sort in reverse order, add the DESC
(descending) keyword to the name of the column you are sorting by in the ORDER BY
clause. The default is ascending order; this may be specified explicitly using the ASC
keyword. SEPARATOR
is followed by the string value that should be inserted between values of result. The default is a comma (‘,
’). You can eliminate the separator altogether by specifying SEPARATOR ''
.
The result is truncated to the maximum length that is given by the group_concat_max_len
system variable, which has a default value of 1024. The value can be set higher, although the maximum effective length of the return value is constrained by the value of max_allowed_packet
. The syntax to change the value of group_concat_max_len
at runtime is as follows, where val
is an unsigned integer:
SET [SESSION | GLOBAL] group_concat_max_len = val
;
Beginning with MySQL 5.0.19, the type returned by GROUP_CONCAT()
is always VARCHAR
unless group_concat_max_len
is greater than 512, in which case, it returns a BLOB
. (Previously, it returned a BLOB
with group_concat_max_len
greater than 512 only if the query included an ORDER BY
clause.)
See also CONCAT()
and CONCAT_WS()
: Section 12.4, “String Functions”.
MIN([DISTINCT]
, expr
)MAX([DISTINCT]
expr
)
Returns the minimum or maximum value of expr
. MIN()
and MAX()
may take a string argument; in such cases they return the minimum or maximum string value. See Section 7.4.5, “How MySQL Uses Indexes”. The DISTINCT
keyword can be used to find the minimum or maximum of the distinct values of expr
, however, this produces the same result as omitting DISTINCT
.
MIN()
and MAX()
return NULL
if there were no matching rows.
mysql>SELECT student_name, MIN(test_score), MAX(test_score)
->FROM student
->GROUP BY student_name;
For MIN()
, MAX()
, and other aggregate functions, MySQL currently compares ENUM
and SET
columns by their string value rather than by the string's relative position in the set. This differs from how ORDER BY
compares them. This is expected to be rectified in a future MySQL release.
Returns the population standard deviation of expr
. This is an extension to standard SQL. The STDDEV()
form of this function is provided for compatibility with Oracle. As of MySQL 5.0.3, the standard SQL function STDDEV_POP()
can be used instead.
These functions return NULL
if there were no matching rows.
Returns the population standard deviation of expr
(the square root of VAR_POP()
). This function was added in MySQL 5.0.3. Before 5.0.3, you can use STD()
or STDDEV()
, which are equivalent but not standard SQL.
STDDEV_POP()
returns NULL
if there were no matching rows.
Returns the sample standard deviation of expr
(the square root of VAR_SAMP()
. This function was added in MySQL 5.0.3.
STDDEV_SAMP()
returns NULL
if there were no matching rows.
Returns the sum of expr
. If the return set has no rows, SUM()
returns NULL
. The DISTINCT
keyword can be used in MySQL 5.0 to sum only the distinct values of expr
.
SUM()
returns NULL
if there were no matching rows.
Returns the population standard variance of expr
. It considers rows as the whole population, not as a sample, so it has the number of rows as the denominator. This function was added in MySQL 5.0.3. Before 5.0.3, you can use VARIANCE()
, which is equivalent but is not standard SQL.
VAR_POP()
returns NULL
if there were no matching rows.
Returns the sample variance of expr
. That is, the denominator is the number of rows minus one. This function was added in MySQL 5.0.3.
VAR_SAMP()
returns NULL
if there were no matching rows.
Returns the population standard variance of expr
. This is an extension to standard SQL. As of MySQL 5.0.3, the standard SQL function VAR_POP()
can be used instead.
VARIANCE()
returns NULL
if there were no matching rows.
The GROUP BY
clause allows a WITH ROLLUP
modifier that causes extra rows to be added to the summary output. These rows represent higher-level (or super-aggregate) summary operations. ROLLUP
thus allows you to answer questions at multiple levels of analysis with a single query. It can be used, for example, to provide support for OLAP (Online Analytical Processing) operations.
Suppose that a table named sales
has year
, country
, product
, and profit
columns for recording sales profitability:
CREATE TABLE sales ( year INT NOT NULL, country VARCHAR(20) NOT NULL, product VARCHAR(32) NOT NULL, profit INT );
The table's contents can be summarized per year with a simple GROUP BY
like this:
mysql> SELECT year, SUM(profit) FROM sales GROUP BY year;
+------+-------------+
| year | SUM(profit) |
+------+-------------+
| 2000 | 4525 |
| 2001 | 3010 |
+------+-------------+
This output shows the total profit for each year, but if you also want to determine the total profit summed over all years, you must add up the individual values yourself or run an additional query.
Or you can use ROLLUP
, which provides both levels of analysis with a single query. Adding a WITH ROLLUP
modifier to the GROUP BY
clause causes the query to produce another row that shows the grand total over all year values:
mysql> SELECT year, SUM(profit) FROM sales GROUP BY year WITH ROLLUP;
+------+-------------+
| year | SUM(profit) |
+------+-------------+
| 2000 | 4525 |
| 2001 | 3010 |
| NULL | 7535 |
+------+-------------+
The grand total super-aggregate line is identified by the value NULL
in the year
column.
ROLLUP
has a more complex effect when there are multiple GROUP BY
columns. In this case, each time there is a “break” (change in value) in any but the last grouping column, the query produces an extra super-aggregate summary row.
For example, without ROLLUP
, a summary on the sales
table based on year
, country
, and product
might look like this:
mysql>SELECT year, country, product, SUM(profit)
->FROM sales
->GROUP BY year, country, product;
+------+---------+------------+-------------+ | year | country | product | SUM(profit) | +------+---------+------------+-------------+ | 2000 | Finland | Computer | 1500 | | 2000 | Finland | Phone | 100 | | 2000 | India | Calculator | 150 | | 2000 | India | Computer | 1200 | | 2000 | USA | Calculator | 75 | | 2000 | USA | Computer | 1500 | | 2001 | Finland | Phone | 10 | | 2001 | USA | Calculator | 50 | | 2001 | USA | Computer | 2700 | | 2001 | USA | TV | 250 | +------+---------+------------+-------------+
The output indicates summary values only at the year/country/product level of analysis. When ROLLUP
is added, the query produces several extra rows:
mysql>SELECT year, country, product, SUM(profit)
->FROM sales
->GROUP BY year, country, product WITH ROLLUP;
+------+---------+------------+-------------+ | year | country | product | SUM(profit) | +------+---------+------------+-------------+ | 2000 | Finland | Computer | 1500 | | 2000 | Finland | Phone | 100 | | 2000 | Finland | NULL | 1600 | | 2000 | India | Calculator | 150 | | 2000 | India | Computer | 1200 | | 2000 | India | NULL | 1350 | | 2000 | USA | Calculator | 75 | | 2000 | USA | Computer | 1500 | | 2000 | USA | NULL | 1575 | | 2000 | NULL | NULL | 4525 | | 2001 | Finland | Phone | 10 | | 2001 | Finland | NULL | 10 | | 2001 | USA | Calculator | 50 | | 2001 | USA | Computer | 2700 | | 2001 | USA | TV | 250 | | 2001 | USA | NULL | 3000 | | 2001 | NULL | NULL | 3010 | | NULL | NULL | NULL | 7535 | +------+---------+------------+-------------+
For this query, adding ROLLUP
causes the output to include summary information at four levels of analysis, not just one. Here's how to interpret the ROLLUP
output:
Following each set of product rows for a given year and country, an extra summary row is produced showing the total for all products. These rows have the product
column set to NULL
.
Following each set of rows for a given year, an extra summary row is produced showing the total for all countries and products. These rows have the country
and products
columns set to NULL
.
Finally, following all other rows, an extra summary row is produced showing the grand total for all years, countries, and products. This row has the year
, country
, and products
columns set to NULL
.
Other Considerations When using ROLLUP
The following items list some behaviors specific to the MySQL implementation of ROLLUP
:
When you use ROLLUP
, you cannot also use an ORDER BY
clause to sort the results. In other words, ROLLUP
and ORDER BY
are mutually exclusive. However, you still have some control over sort order. GROUP BY
in MySQL sorts results, and you can use explicit ASC
and DESC
keywords with columns named in the GROUP BY
list to specify sort order for individual columns. (The higher-level summary rows added by ROLLUP
still appear after the rows from which they are calculated, regardless of the sort order.)
LIMIT
can be used to restrict the number of rows returned to the client. LIMIT
is applied after ROLLUP
, so the limit applies against the extra rows added by ROLLUP
. For example:
mysql>SELECT year, country, product, SUM(profit)
->FROM sales
->GROUP BY year, country, product WITH ROLLUP
->LIMIT 5;
+------+---------+------------+-------------+ | year | country | product | SUM(profit) | +------+---------+------------+-------------+ | 2000 | Finland | Computer | 1500 | | 2000 | Finland | Phone | 100 | | 2000 | Finland | NULL | 1600 | | 2000 | India | Calculator | 150 | | 2000 | India | Computer | 1200 | +------+---------+------------+-------------+
Using LIMIT
with ROLLUP
may produce results that are more difficult to interpret, because you have less context for understanding the super-aggregate rows.
The NULL
indicators in each super-aggregate row are produced when the row is sent to the client. The server looks at the columns named in the GROUP BY
clause following the leftmost one that has changed value. For any column in the result set with a name that is a lexical match to any of those names, its value is set to NULL
. (If you specify grouping columns by column number, the server identifies which columns to set to NULL
by number.)
Because the NULL
values in the super-aggregate rows are placed into the result set at such a late stage in query processing, you cannot test them as NULL
values within the query itself. For example, you cannot add HAVING product IS NULL
to the query to eliminate from the output all but the super-aggregate rows.
On the other hand, the NULL
values do appear as NULL
on the client side and can be tested as such using any MySQL client programming interface.
MySQL extends the use of GROUP BY
so that you can use non-aggregated columns or calculations in the SELECT
list that do not appear in the GROUP BY
clause. You can use this feature to get better performance by avoiding unnecessary column sorting and grouping. For example, you do not need to group on customer.name
in the following query:
SELECT order.custid, customer.name, MAX(payments) FROM order,customer WHERE order.custid = customer.custid GROUP BY order.custid;
In standard SQL, you would have to add customer.name
to the GROUP BY
clause. In MySQL, the name is redundant.
Do not use this feature if the columns you omit from the GROUP BY
part are not constant in the group. The server is free to return any value from the group, so the results are indeterminate unless all values are the same.
A similar MySQL extension applies to the HAVING
clause. The SQL standard does not allow the HAVING
clause to name any column that is not found in the GROUP BY
clause if it is not enclosed in an aggregate function. MySQL allows the use of such columns to simplify calculations. This extension assumes that the non-grouped columns will have the same group-wise values. Otherwise, the result is indeterminate.
If the ONLY_FULL_GROUP_BY
SQL mode is enabled, the MySQL extension to GROUP BY
does not apply. That is, columns not named in the GROUP BY
clause cannot be used in the SELECT
list or HAVING
clause if not used in an aggregate function.
The select list extension also applies to ORDER BY
. That is, you can use non-aggregated columns or calculations in the ORDER BY
clause that do not appear in the GROUP BY
clause. This extension does not apply if the ONLY_FULL_GROUP_BY
SQL mode is enabled.
In some cases, you can use MIN()
and MAX()
to obtain a specific column value even if it isn't unique. The following gives the value of column
from the row containing the smallest value in the sort
column:
SUBSTR(MIN(CONCAT(RPAD(sort,6,' '),column)),7)
See Section 3.6.4, “The Rows Holding the Group-wise Maximum of a Certain Field”.
Note that if you are trying to follow standard SQL, you can't use expressions in GROUP BY
clauses. You can work around this limitation by using an alias for the expression:
SELECT id,FLOOR(value/100) AS val
FROM tbl_name
GROUP BY id, val;
MySQL does allow expressions in GROUP BY
clauses. For example:
SELECT id,FLOOR(value/100)
FROM tbl_name
GROUP BY id, FLOOR(value/100);